
STATISTICS IN TRANSITION new series, December 2025 
Vol. 26, No. 4, pp. xxx–xxx, https://doi.org/10.59139/stattrans-2025-xxx 
Received – xx.xx.xxxx; accepted – xx.xx.xxxx 

Mean estimation based on the factor-type estimator under an 
adaptive cluster sampling design 
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Abstract 

If a sample is designated by a standard sampling strategy and if the character of the study 
satisfies a predetermined statement for an independent unit in the sample, then the items  
in the locality remain automatically in the sample. This type of method of selection of sampling 
units is called adaptive cluster sampling. This manuscript emphasizes the use of the factor-type 
estimator designed for population mean of the variable under study using the data of highly 
correlated auxiliary (supplementary) variable under adaptive cluster sampling. The bias, mean 
squared error and optimum mean squared errors up to the first order is obtained and a simula-
tion study is performed for comparison purpose. 

Key words: adaptive cluster sampling (ACS), ratio estimator, factor-type estimator, auxiliary 
variable, bias, mean squared error (MSE). 
Mathematical Subject Code: 62D05. 

1.  Introduction 

Thompson (1990) introduced an innovative sampling scheme called adaptive sam-
pling, which directly incorporates the knowledge of the study variable into the selection 
process. This approach is distinct from traditional sampling strategies that rely solely 
on predetermined sampling plans. The adaptive sampling scheme was proposed to ad-
dress situations where the study variable exhibits certain patterns or characteristics that 
can inform the sampling process. For instance, in surveys involving rare species, re-
searchers may gather information on the number of individuals with specific charac-
teristics. Frequently, zero abundance is encountered, but when substantial abundance 
is observed, it suggests that additional clusters of abundance might be found in nearby 
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locations. This pattern is not limited to rare species but can be observed in various do-
mains such as whales, insects, trees, lichens, and more. The conventional approach  
in sample surveys involves deciding on a sampling strategy before data collection 
begins. However, this predetermined approach may not always be effective, especially 
in certain scenarios. For instance, in epidemiological studies of infectious diseases, 
encountering a diseased individual suggests a higher-than-expected incidence rate 
among nearby individuals. In such cases, ground staff may deviate on or after the 
predesignated selection plan and then combine adjacent or closely allied items to the 
sample. 

Thompson's (1990) adaptive sampling scheme addresses this need for flexibility  
in sampling. It starts with drawing a preliminary sample of a predetermined size using 
a standard sampling strategy. The values of the sampled items are then examined, and 
if an elected item fulfils a specified condition, supplementary items are put in to the 
sample from the locality of that item. Thus, adaptive process allows for the expansion 
of the sample based on specific criteria or patterns observed in the study variable. The 
design of the adaptive sampling scheme is demonstrated in Figure 1(a) and 1(b), which 
likely provide visual representations of how the sampling process unfolds. 

The Figure 1(a) illustrates the preliminary sampling stage of the adaptive sampling 
scheme. A sample of 12 units is selected using a probability sampling procedure, which 
could be any conventional sampling design. The key feature of adaptive sampling is that 
when one or more units in the preliminary sample satisfy a specific criterion associated 
to the variable under study, accompanying units from locality of those selected units 
are included in the sample. The neighborhood is typically defined based on spatial 
proximity, as indicated by the connected units on the left, right, top, and bottom  
in Figure 1(a). 

         *           
 *                   
 *               *    
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  *    *              
                    

Figure 1(a): Preliminary sample of 12 units 
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After the adaptive procedure is finished, the sample contains 54 units, as revealed 
in Figure 1(b), where the symbol  *  represents the unit selected in preliminary sample 
of size 12. It should be noted that the concept of neighborhood is not limited to spatial 
proximity and is able to be express in numerous aspects subject to the condition and 
the nature of the study. In summary, in the adaptive sampling scheme, a preliminary 
subgroup of some units is selected using a probability sampling technique and if the 
variable of interest for a carefully chosen item satisfies a given criterion, subsequent 
units from the locality of that item are considered in the sample. This adaptive approach 
allows for the expansion of the sample based on specific conditions or patterns observed 
in the variable of interest. 

   *     * * *          
 * * * *     *           
 * * * *            *    
   *                 
                    
             *       
     *       * * *      
    * * *       * *      
     *               
                    
  *                  
  *       *           
 * *      * * *          
        * * *          
         * *       *   
                    
                *    
  *    * *         * * *  
  *    * * *       *     
  *     *             

Figure 1(b): Adaptive cluster sample of 54 units 

In the adaptive selection system, the criterion for picking additional neighboring 
items can be defined in various ways, depending on the nature of the study. One 
approach is to frame the criterion as an interval L that covers a specific range of values 
related to the variable of curiosity. If a unit is considered in the sample, it should meet 
the criteria fixed by the interval L. Mathematically, it can be represented as if i ∈ L then 
the unit i ∈ S. 

The provided definitions lay the foundation for understanding the structure and 
components of the sampling process in the adaptive cluster sampling scheme. Let's 
elaborate on each definition: 
1) Neighborhood of a unit: The neighborhood of a unit i refers to a group of items 

that contains unit i. These neighborhoods are determined on the basis of design 
and selection process and are independent of the population values. 
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2) Cluster: A cluster is the assembly of all units that are detected as per an outcome 
of the preliminary choice of a specific item i. In ACS, the preliminary selection of 
a unit (seed unit) leads to the insertion of entire units in the corresponding cluster 
in the final sample. It is possible for a cluster to consist of the union of several 
neighborhoods, which means that multiple neighborhoods can be grouped 
together as part of the same cluster. The concept of clusters is important for 
understanding the unit selection process and how ACS samples are formed. 

3) Network: It is a set of items where the inclusion of any item in the preliminary 
sample from that set ensures the inclusion of all units in that network in the final 
sample. In other words, if a single unit from a network is selected, the entire 
network becomes part of the sample. It is worth noting that units not satisfying the 
condition L are also considered network, but they consist of a single unit only. 
Networks play a significant role in adaptive sampling, where certain networks may 
be oversampled to improve estimation efficiency. 

4) Edge unit: An edge unit is a population item that does not satisfy the network 
requirements but is in the neighborhood of an item that satisfies the condition L. 
Essentially, edge units are on the boundary of clusters or networks. They play  
a crucial role in ACS because their selection may influence the inclusion of entire 
clusters or networks in the final sample. 
The estimators taken into consideration as a relationship between neighborhoods, 

clusters, networks, and edge units to obtain a reliable and efficient population estimate 
and to make a valid statistical inference under adaptive cluster sampling. For further 
study some useful and valuable contributions for readers are advise as Chao (2004), 
Chutiman and Kumphon (2008), Dryver and Thompson (1998), Pochai (2008) etc. 
This manuscript is concerned with to develop the factor-type estimator in adaptive 
cluster sampling and discuss its properties. Furthermore, how we were motivating for 
writing this manuscript is explained in Section 3 of this paper.  

1.1. Notations 

Let y be the variable under study based on a population U and let it consists of a set 
of N units indexed by their labels U = {1, 2, ... N}. The population mean of y is 𝑌𝑌� = 𝜇𝜇𝑦𝑦 
= 1
𝑁𝑁

 ∑ 𝑦𝑦𝑖𝑖𝑁𝑁
i=1 . Let 𝑌𝑌�ac =  𝑤𝑤�𝑦𝑦 = 1

𝑛𝑛
 ∑ 𝑤𝑤𝑦𝑦𝑦𝑦𝑛𝑛

i=1  be the estimate of the mean in adaptive cluster 
sampling. Let us consider: 
 n = Size of preliminary sample, 
 𝐴𝐴𝑖𝑖 = Network which consists of the item i, 
 𝑚𝑚𝑖𝑖 = The amount of the items in the network to which ith item belongs. 

Let wyi and wxi represent the mean of y and the mean of x in the network which 
consist of unit i, viz., 𝑤𝑤𝑦𝑦𝑦𝑦 = 1

𝑚𝑚𝑖𝑖
 ∑ 𝑦𝑦𝑗𝑗𝑗𝑗ϵ𝐴𝐴𝑖𝑖  and 𝑤𝑤𝑥𝑥𝑥𝑥 = 1

𝑚𝑚𝑖𝑖
 ∑ 𝑥𝑥𝑗𝑗𝑗𝑗𝜖𝜖𝐴𝐴𝑖𝑖  respectively. According to 
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Dryver and Chao (2007) adaptive cluster sampling is considered as SRSWOR when the 
means of networks are considered under study. Let us use the notations 𝑤𝑤�𝑦𝑦 and 𝑤𝑤�𝑥𝑥 to 
denote the sample means of the study and supplementary variables in the transformed 
sample respectively. We calculate 𝑤𝑤�𝑦𝑦 and 𝑤𝑤�𝑥𝑥 as 

𝑤𝑤�𝑦𝑦 = 1
𝑛𝑛

 ∑ 𝑤𝑤𝑦𝑦𝑦𝑦𝑛𝑛
i=1  and  𝑤𝑤�𝑥𝑥 = 1

𝑛𝑛
∑ 𝑤𝑤𝑥𝑥𝑥𝑥𝑛𝑛
i=1  

For simplicity we write,  

  𝑠𝑠𝑤𝑤𝑤𝑤2  = 1
𝑛𝑛−1

 ∑ (𝑤𝑤𝑦𝑦𝑦𝑦 − 𝑤𝑤�𝑦𝑦)2𝑛𝑛
i=1 , 𝑠𝑠𝑤𝑤𝑤𝑤2  = 1

𝑛𝑛−1
 ∑ (𝑤𝑤𝑥𝑥𝑥𝑥 −  𝑤𝑤�𝑥𝑥)2𝑛𝑛

𝑖𝑖=1  

are unbiased estimators of 

𝑆𝑆𝑤𝑤𝑤𝑤2  = 1
𝑁𝑁−1

 ∑ (𝑤𝑤𝑦𝑦𝑦𝑦 −  𝑌𝑌�)2𝑁𝑁
𝑖𝑖=1 , 𝑆𝑆𝑤𝑤𝑤𝑤2  = 1

𝑁𝑁−1
 ∑ (𝑤𝑤𝑥𝑥𝑥𝑥 −   𝑋𝑋�)2𝑁𝑁

𝑖𝑖=1      respectively, 

and   𝜇𝜇𝑟𝑟𝑟𝑟 =  1
𝑁𝑁

 ∑ �𝑤𝑤𝑦𝑦𝑦𝑦 −  𝑌𝑌��𝑟𝑟𝑁𝑁
𝑖𝑖=1 (𝑤𝑤𝑥𝑥𝑥𝑥 −  𝑋𝑋�)𝑠𝑠 ;  where  𝑟𝑟, 𝑠𝑠   are positive integers. 

Also,  𝐶𝐶𝑤𝑤𝑤𝑤2  = 𝑆𝑆𝑤𝑤𝑤𝑤
2

𝑌𝑌�2
  and  𝐶𝐶𝑤𝑤𝑤𝑤2  = 𝑆𝑆𝑤𝑤𝑤𝑤

2

𝑋𝑋�2
  are the coefficient of variations of 𝑤𝑤𝑦𝑦 and 𝑤𝑤𝑥𝑥 

respectively, 
and  𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤 = 𝜇𝜇11

𝑆𝑆𝑤𝑤𝑤𝑤𝑆𝑆𝑤𝑤𝑤𝑤
 is the coefficient of correlation between 𝑤𝑤𝑦𝑦 and 𝑤𝑤𝑥𝑥. 

Using the concept of large sample approximations, let ε = 𝑤𝑤
�𝑦𝑦
𝑌𝑌�
− 1 and 𝜂𝜂 = 𝑤𝑤�𝑥𝑥

𝑋𝑋�
− 1, 

for specified 𝑤𝑤�𝑦𝑦, 𝑤𝑤�𝑥𝑥 respectively, then  

E(ε) = E(𝜂𝜂) = 0, E(𝜀𝜀2) = 𝐶𝐶𝑤𝑤𝑤𝑤
2

𝑛𝑛
, E(𝜂𝜂2) = 𝐶𝐶𝑤𝑤𝑤𝑤

2

𝑛𝑛
, E(ε𝜂𝜂) = 𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤𝐶𝐶𝑤𝑤𝑤𝑤𝐶𝐶𝑤𝑤𝑤𝑤 

and E(𝜀𝜀𝑖𝑖𝜂𝜂𝑗𝑗) = 0 if  i + j > 2; i, j = 0, 1, 2, … . 
The expectations as derived above under the concept of large sample 

approximations will be used for further mathematical treatments. 

Remark: Assume, α = 1
1+𝐶𝐶𝑤𝑤𝑤𝑤∗

;  𝜔𝜔 =  𝛽𝛽2(𝑤𝑤𝑥𝑥)
𝛽𝛽2(𝑤𝑤𝑥𝑥)+ 𝐶𝐶𝑤𝑤𝑤𝑤∗

 ;  δ = 1
1+ 𝛽𝛽2∗ (𝑤𝑤𝑥𝑥) ; 

𝜃𝜃1 = 𝑓𝑓𝑓𝑓
𝐴𝐴+𝑓𝑓𝑓𝑓+𝐶𝐶

;  𝜃𝜃2 = 𝐶𝐶
𝐴𝐴+𝑓𝑓𝑓𝑓+𝐶𝐶

;  P = (𝜃𝜃1 −  𝜃𝜃2);  V = 𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤
𝐶𝐶𝑤𝑤𝑤𝑤
𝐶𝐶𝑤𝑤𝑤𝑤

. 

The above symbols will be used for further algebraic treatments. 

2.  Existing estimators and their characteristics in adaptive cluster sampling 

Some existing estimators under adaptive cluster sampling are considered in this 
section. Note that, the constants 𝐶𝐶𝑤𝑤𝑤𝑤∗  = 𝐶𝐶𝑤𝑤𝑤𝑤

𝑋𝑋�
 , 𝛽𝛽2∗(𝑤𝑤𝑥𝑥) = 𝛽𝛽2(𝑤𝑤𝑥𝑥)

𝑋𝑋�
, 𝑢𝑢𝑤𝑤𝑤𝑤 =  𝑤𝑤�𝑥𝑥

𝑥̅𝑥
  and 

𝑋𝑋�  = 𝜇𝜇𝑥𝑥  =  1
𝑁𝑁

 ∑ 𝑥𝑥𝑖𝑖𝑁𝑁
i=1  , 𝐶𝐶𝑤𝑤𝑤𝑤, 𝛽𝛽2(𝑤𝑤𝑥𝑥) of the auxiliary variable are known in advance by 

past experience. 
The unbiased Hansen and Hurwitz estimator for the population mean of main 

variable is given by [see, Thompson (1990), Thompson and Seber (1996)] 
  𝑌𝑌�𝑎𝑎𝑎𝑎 =  1

𝑁𝑁
∑ (𝑤𝑤𝑦𝑦)𝑖𝑖𝑁𝑁
𝑖𝑖=1  = 𝑤𝑤�𝑦𝑦        (2.1) 
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where, (𝑤𝑤𝑦𝑦)𝑖𝑖 is mean of the main variable in the network that contains item i of the 
preliminary sample. 

The variance of 𝑌𝑌�𝑎𝑎𝑎𝑎 is  
V(𝑌𝑌�𝑎𝑎𝑎𝑎) = (𝑁𝑁−𝑛𝑛)

𝑁𝑁𝑁𝑁(𝑁𝑁−1)
∑ [(𝑤𝑤𝑦𝑦)𝑖𝑖 −  𝜇𝜇𝑦𝑦]2𝑁𝑁
𝑖𝑖=1  = 𝑁𝑁−𝑛𝑛

𝑁𝑁𝑁𝑁
 𝑆𝑆𝑤𝑤𝑤𝑤2    (2.2) 

The ratio type estimator under adaptive cluster sampling strategy projected by 
Dryver and Chao (2007) as 

𝑌𝑌�𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑤𝑤�𝑦𝑦 𝑋𝑋
�

𝑤𝑤�𝑥𝑥 
=  𝑅𝑅�𝑎𝑎𝑎𝑎  𝑋𝑋�          (2.3) 

where,  𝑅𝑅�𝑎𝑎𝑎𝑎 = 𝑤𝑤
�𝑦𝑦
𝑤𝑤�𝑥𝑥

 . The estimator  𝑌𝑌�𝑅𝑅𝑎𝑎𝑎𝑎 in relationships of ε and 𝜂𝜂 can approximate up to 

the first order and is expressed as   
𝑌𝑌�𝑅𝑅𝑎𝑎𝑎𝑎 = 𝑌𝑌�[1 + 𝜀𝜀 − 𝜂𝜂 − 𝜀𝜀𝜀𝜀 + 𝜂𝜂2] 

This estimator is biased and its bias up to the first order is  
  

B(𝑌𝑌�𝑅𝑅𝑎𝑎𝑎𝑎) = 𝑌𝑌
�

𝑛𝑛
 �𝐶𝐶𝑤𝑤𝑤𝑤2 − 𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤𝐶𝐶𝑤𝑤𝑤𝑤𝐶𝐶𝑤𝑤𝑤𝑤�       (2.4) 

The expression of MSE is  

  M(𝑌𝑌�𝑅𝑅𝑎𝑎𝑎𝑎) = 𝑌𝑌
�2

𝑛𝑛
 �𝐶𝐶𝑤𝑤𝑤𝑤2 + 𝐶𝐶𝑤𝑤𝑤𝑤2 − 2𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤𝐶𝐶𝑤𝑤𝑤𝑤𝐶𝐶𝑤𝑤𝑤𝑤�    (2.5) 

Chutiman (2013) suggested some estimators in adaptive cluster sampling described 
as below 

(A)           𝑌𝑌�𝑅𝑅𝑎𝑎𝑎𝑎2  = 𝑤𝑤�𝑦𝑦 �
1+ 𝐶𝐶𝑤𝑤𝑤𝑤∗

𝑢𝑢𝑤𝑤𝑤𝑤+ 𝐶𝐶𝑤𝑤𝑤𝑤∗
�         (2.6) 

and the estimator  𝑌𝑌�𝑅𝑅𝑎𝑎𝑎𝑎1 in relationships of ε and 𝜂𝜂 approximate up to the first order, 
can be expressed as 

𝑌𝑌�𝑅𝑅𝑅𝑅𝑅𝑅1 = 𝑌𝑌�[1 +  𝜀𝜀 −  𝛼𝛼𝜂𝜂 −  𝛼𝛼𝛼𝛼𝜂𝜂 + 𝛼𝛼2𝜂𝜂2] 
This estimator is biased and its bias up to the first order is 

 B�𝑌𝑌�𝑅𝑅𝑎𝑎𝑎𝑎2� = 𝑌𝑌
�

𝑛𝑛
 �𝛼𝛼2𝐶𝐶𝑤𝑤𝑤𝑤2 −  𝛼𝛼𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤𝐶𝐶𝑤𝑤𝑤𝑤𝐶𝐶𝑤𝑤𝑤𝑤�     (2.7) 

The equation of MSE is 

𝑀𝑀�𝑌𝑌�𝑅𝑅𝑎𝑎𝑎𝑎1� = 𝑌𝑌
�2

𝑛𝑛 
 �𝐶𝐶𝑤𝑤𝑤𝑤2 + α2C𝑤𝑤𝑤𝑤2 − 2𝛼𝛼𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤𝐶𝐶𝑤𝑤𝑤𝑤𝐶𝐶𝑤𝑤𝑤𝑤�    (2.8) 

(B)          𝑌𝑌�𝑅𝑅𝑎𝑎𝑎𝑎2= 𝑤𝑤�𝑦𝑦 �
𝛽𝛽2(𝑤𝑤𝑥𝑥)+ 𝐶𝐶𝑤𝑤𝑤𝑤∗

𝛽𝛽2(𝑤𝑤𝑥𝑥)𝑢𝑢𝑤𝑤𝑤𝑤+ 𝐶𝐶𝑤𝑤𝑤𝑤∗
�        (2.9) 

and the estimator  𝑌𝑌�𝑅𝑅𝑎𝑎𝑎𝑎2 in relationships of ε and 𝜂𝜂 approximate up to the first order, 
can be expressed as 

𝑌𝑌�𝑅𝑅𝑎𝑎𝑎𝑎2 = 𝑌𝑌�  [1 + 𝜀𝜀 − 𝜔𝜔𝜔𝜔 − 𝜔𝜔𝜔𝜔𝜔𝜔 + 𝜔𝜔2𝜂𝜂2] 
This estimator is biased and its bias up to the first order is 

 𝐵𝐵�𝑌𝑌�𝑅𝑅𝑎𝑎𝑎𝑎2� = 𝑌𝑌
�

𝑛𝑛
[𝜔𝜔2𝐶𝐶𝑤𝑤𝑤𝑤2 − 𝜔𝜔𝜌𝜌𝑤𝑤𝑤𝑤𝑥𝑥𝐶𝐶𝑤𝑤𝑤𝑤𝐶𝐶𝑤𝑤𝑤𝑤]       (2.10) 

The equation of MSE is 

  𝑀𝑀�𝑌𝑌�𝑅𝑅𝑎𝑎𝑎𝑎2� = 𝑌𝑌
�2

𝑛𝑛
 [𝐶𝐶𝑤𝑤𝑤𝑤2 + 𝜔𝜔2𝐶𝐶𝑤𝑤𝑤𝑤2 − 2𝜔𝜔𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤𝐶𝐶𝑤𝑤𝑤𝑤𝐶𝐶𝑤𝑤𝑤𝑤]   (2.11) 
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(C)        𝑌𝑌�𝑅𝑅𝑎𝑎𝑎𝑎3 = 𝑤𝑤�𝑦𝑦 � 1+ 𝛽𝛽2∗ (𝑤𝑤𝑥𝑥)
𝑢𝑢𝑤𝑤𝑤𝑤+ 𝛽𝛽2∗ (𝑤𝑤𝑥𝑥)�           (2.12) 

and the estimator  𝑌𝑌�𝑅𝑅𝑎𝑎𝑎𝑎3 in relationships of ε and 𝜂𝜂, approximate up to the first order, 
can be expressed as 

𝑌𝑌�𝑅𝑅𝑎𝑎𝑎𝑎3 = 𝑌𝑌�  [1 + 𝜀𝜀 − 𝛿𝛿𝛿𝛿 − 𝛿𝛿𝛿𝛿𝛿𝛿 + 𝛿𝛿2𝜂𝜂2] 

This estimator is biased and its bias up to the first order is 

𝐵𝐵�𝑌𝑌�𝑅𝑅𝑎𝑎𝑎𝑎3� = 𝑌𝑌
�

𝑛𝑛
�𝛿𝛿2𝐶𝐶𝑤𝑤𝑤𝑤2 − 𝛿𝛿𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤𝐶𝐶𝑤𝑤𝑤𝑤𝐶𝐶𝑤𝑤𝑤𝑤�       (2.13)   

The equation of MSE is 

𝑀𝑀�𝑌𝑌�𝑅𝑅𝑎𝑎𝑎𝑎3� = 𝑌𝑌
�2

𝑛𝑛
 �𝐶𝐶𝑤𝑤𝑤𝑤2 +  𝛿𝛿2𝐶𝐶𝑤𝑤𝑤𝑤2 − 2𝛿𝛿𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤𝐶𝐶𝑤𝑤𝑤𝑤𝐶𝐶𝑤𝑤𝑤𝑤�      (2.14) 

The proofs of the above expressions are simple and readers can obtain them similar 
manner to that described in Section 4 for the proposed factor-type estimator using large 
sample approximations.  

3. Proposed Estimator in adaptive cluster sampling 

Singh and Shukla (1987) proposed a factor-type (F-T) estimator for estimating 
population mean and Singh and Shukla (1993) derived an efficient factor-type 
estimator family for estimating the similar population mean. Shukla (2002) suggested 
factor-type estimator for estimation in two-phase sampling. Also, Shukla and Thakur 
(2008), Thakur and Shukla (2022) developed factor-type estimator as a device of 
imputation used for dealing with missingness of the data. 

Deriving motivation from all of these, we advocate the modified factor-type 
estimator for adaptive cluster sampling is  

   𝑌𝑌�𝐹𝐹𝐹𝐹𝐹𝐹 =  𝑤𝑤�𝑦𝑦  (𝐴𝐴+𝐶𝐶)𝑋𝑋�+𝑓𝑓𝑓𝑓𝑤𝑤�𝑥𝑥
(𝐴𝐴+𝑓𝑓𝑓𝑓)𝑋𝑋�+𝐶𝐶𝑤𝑤�𝑥𝑥

        (3.1) 

where, 𝐴𝐴 = (𝑘𝑘 − 1)(𝑘𝑘 − 2);  𝐵𝐵 = (𝑘𝑘 − 1)(𝑘𝑘 − 4); 

   𝐶𝐶 = (𝑘𝑘 − 2)(𝑘𝑘 − 3)(𝑘𝑘 − 4); 𝑓𝑓 = 𝑛𝑛
𝑁𝑁

 and  ∞<< k0  is a constant. 

The estimator 𝑌𝑌�𝐹𝐹𝐹𝐹𝐹𝐹 is biased and the expressions of bias, MSE and optimum MSE 
up to the first order of approximations are obtained ahead in Section 4. Theoretical and 
numerical comparisons of different estimators as discussed earlier, with 𝑌𝑌�𝐹𝐹𝐹𝐹𝐹𝐹 is 
presented in Section 5 and Section 7 respectively. 

For some specified values of k, the estimator 𝑌𝑌�𝐹𝐹𝐹𝐹𝐹𝐹 provides some well-known 
estimators like – ratio, product, dual to ratio and unbiased unit mean estimator for 
population mean, i.e. at k = 1, 2, 3 and 4, the estimator 𝑌𝑌�𝐹𝐹𝑇𝑇𝑇𝑇 is as special case in the 
following Table 3.1.  
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Table 3.1: Adaptive factor-type estimator as special cases 

Value of k Estimators Value of k Estimators 

k = 1 𝑦𝑦�𝐹𝐹𝐹𝐹𝐹𝐹 =  𝑤𝑤�𝑦𝑦
𝑋𝑋�
𝑤𝑤�𝑥𝑥

 k = 2 𝑦𝑦�𝐹𝐹𝐹𝐹𝐹𝐹  = 𝑤𝑤�𝑦𝑦
𝑤𝑤�𝑥𝑥
𝑋𝑋�

 

k = 3 𝑦𝑦�𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑤𝑤�𝑦𝑦
𝑁𝑁𝑋𝑋�−𝑛𝑛𝑤𝑤�𝑥𝑥 
(𝑁𝑁−𝑛𝑛) 𝑋𝑋�

 k = 4 𝑦𝑦�𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑤𝑤�𝑦𝑦 

For k = 1 the estimator 𝑦𝑦�𝐹𝐹𝐹𝐹𝐹𝐹 provides the ratio estimator for mean, for k = 2 the 
proposed estimator is termed in product estimator, for k = 3 the estimator 𝑦𝑦�𝐹𝐹𝐹𝐹𝐹𝐹  is 
converted as dual to ratio estimator and for k = 4 the factor of auxiliary information 
vanishes and the estimator 𝑦𝑦�𝐹𝐹𝐹𝐹𝐹𝐹 is the same as unbiased unit mean estimator in adaptive 
cluster sampling. 

4. Bias, MSE and optimum MSE of the proposed estimator 

Let 𝐵𝐵�𝜃𝜃��, 𝑀𝑀�𝜃𝜃�� and 𝑀𝑀�𝜃𝜃��
𝑚𝑚𝑚𝑚𝑚𝑚 represents the bias, MSE and minimum MSE of the 

estimator 𝜃𝜃. Further, the equations of bias, MSE and minimum MSE of the proposed 
estimators in terms of population parameters and other constants (as available) up to 
the first order are represented in the subsequent theorems using the concept of large 
sample approximations. 

Theorem 4.1: The estimator 𝑌𝑌�𝐹𝐹𝐹𝐹𝐹𝐹 in terms of ε and 𝜂𝜂  up to the first order, could be 
stated as 

𝑌𝑌�𝐹𝐹𝑇𝑇𝑇𝑇 = 𝑌𝑌�[1 + 𝜀𝜀 + 𝑃𝑃(𝜂𝜂 + 𝜀𝜀𝜀𝜀 − 𝜂𝜂2𝜃𝜃2)]      (4.1) 

Proof: From equation (3.1), we have 

𝑌𝑌�𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑤𝑤�𝑦𝑦  (𝐴𝐴+𝐶𝐶)𝑋𝑋�+𝑓𝑓𝑓𝑓𝑤𝑤�𝑥𝑥
(𝐴𝐴+𝑓𝑓𝑓𝑓)𝑋𝑋�+𝐶𝐶𝑤𝑤�𝑥𝑥

 

and by using the concept of large sample approximation as discussed in Section 1.1 

     𝑌𝑌�𝐹𝐹𝐹𝐹𝐹𝐹  = Y� (1 + 𝜀𝜀) �(𝐴𝐴+𝐶𝐶)𝑋𝑋 �+ 𝑓𝑓𝑓𝑓𝑋𝑋�(1+ 𝜂𝜂)
(𝐴𝐴+𝑓𝑓𝑓𝑓)𝑋𝑋 �+ 𝐶𝐶𝑋𝑋� (1+ 𝜂𝜂)

� 

    = 𝑌𝑌�(1 + 𝜀𝜀)(1 + 𝜃𝜃1𝜂𝜂)�1 + 𝜃𝜃2−1� 
    = 𝑌𝑌�(1 + 𝜀𝜀)(1 + 𝜃𝜃1𝜂𝜂)(1 + 𝜃𝜃2𝜂𝜂 + 𝜃𝜃22𝜂𝜂2 − ⋯ ) 
    = 𝑌𝑌�[1 + 𝜀𝜀 + 𝑃𝑃(𝜂𝜂 + 𝜀𝜀𝜀𝜀 − 𝜂𝜂2𝜃𝜃2)]  
Theorem 4.2: Bias of  𝑌𝑌�𝐹𝐹𝐹𝐹𝐹𝐹 in the relationships of population parameters is 

  B(𝑌𝑌�𝐹𝐹𝐹𝐹𝐹𝐹) = −𝑌𝑌�

𝑛𝑛
 P[𝜃𝜃2𝐶𝐶𝑤𝑤𝑤𝑤2 + 𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤𝐶𝐶𝑤𝑤𝑤𝑤𝐶𝐶𝑤𝑤𝑤𝑤]      (4.2) 

Proof: B(𝑌𝑌�𝐹𝐹𝐹𝐹𝐹𝐹) = E(𝑌𝑌�𝐹𝐹𝐹𝐹𝐹𝐹 − 𝑌𝑌�) 

       = −𝑌𝑌�

𝑛𝑛
 P�θ2𝐶𝐶𝑤𝑤𝑤𝑤2 − 𝜌𝜌𝑤𝑤𝑤𝑤𝑥𝑥𝐶𝐶𝑤𝑤𝑤𝑤𝐶𝐶𝑤𝑤𝑤𝑤� 

Theorem 4.3: MSE of 𝑌𝑌�𝐹𝐹𝐹𝐹𝐹𝐹 in the relationships of population parameters is 

  M(𝑌𝑌�𝐹𝐹𝐹𝐹𝐹𝐹) = 𝑌𝑌
�2

𝑛𝑛
 [𝐶𝐶𝑤𝑤𝑤𝑤2 +  𝑃𝑃2 𝐶𝐶𝑤𝑤𝑤𝑤2 + 2𝑃𝑃𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤𝐶𝐶𝑤𝑤𝑤𝑤𝐶𝐶𝑤𝑤𝑤𝑤]     (4.3) 
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Proof: M(𝑌𝑌�𝐹𝐹𝐹𝐹𝐹𝐹) = E(𝑌𝑌�𝐹𝐹𝐹𝐹𝑐𝑐 −  𝑌𝑌�)2 

                  = 𝑌𝑌
�2

𝑛𝑛
 [𝐶𝐶𝑤𝑤𝑤𝑤2 + 𝑃𝑃2𝐶𝐶𝑤𝑤𝑤𝑤2 + 2𝑃𝑃𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤𝐶𝐶𝑤𝑤𝑤𝑤𝐶𝐶𝑤𝑤𝑤𝑤] 

Theorem 4.4: The minimum MSE of (𝑌𝑌�𝐹𝐹𝐹𝐹𝐹𝐹), when P = –V  is  

  M(𝑌𝑌�𝐹𝐹𝐹𝐹𝐹𝐹)𝑚𝑚𝑚𝑚𝑚𝑚= 𝑆𝑆𝑤𝑤𝑤𝑤
2

𝑛𝑛
 (1 – 𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤2 )       (4.4) 

Proof: Minimum MSE occurs when 
𝑑𝑑
𝑑𝑑𝑑𝑑

 M(𝑌𝑌�𝐹𝐹𝐹𝐹𝐹𝐹) = 0 
or                                                          2P𝐶𝐶𝑤𝑤𝑤𝑤2 + 2𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤𝐶𝐶𝑤𝑤𝑤𝑤𝐶𝐶𝑤𝑤𝑤𝑤 = 0  
the optimal condition is 

P = −𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤 𝐶𝐶𝑤𝑤𝑤𝑤
𝐶𝐶𝑤𝑤𝑤𝑤

 = −V   (let)        (4.5) 

Hence,                          M(𝑌𝑌�𝐹𝐹𝐹𝐹𝐹𝐹)𝑚𝑚𝑚𝑚𝑚𝑚 = �1−  𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤2 � 𝑆𝑆𝑤𝑤𝑤𝑤
2

𝑛𝑛
 

By simplifying the optimality condition P = −𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤 𝐶𝐶𝑤𝑤𝑤𝑤
𝐶𝐶𝑤𝑤𝑤𝑤

 = −V, we will get a cubic 

equation in terms of k and the roots of this equation will provide us best choice of 
parameter k for minimum mean squared error with lowest bias.  

4.1. Bias control estimator  𝒀𝒀�𝑭𝑭𝑭𝑭𝑭𝑭 

The condition of optimality provides from equation (4.5) 
   𝐴𝐴𝐴𝐴 + (𝑉𝑉 + 1)𝑓𝑓𝑓𝑓 + (𝑉𝑉 − 1)𝐶𝐶 = 0        (4.6) 

The equation (4.6) is an equation of degree 3 in terms of k.  
Obviously, at most three values of k (𝑘𝑘1, 𝑘𝑘2, 𝑘𝑘3) are possible for which MSE is 

optimum.  
The choice criteria for best estimation is: 

1)  Compute  
�𝐵𝐵(𝑌𝑌�𝐹𝐹𝐹𝐹𝐹𝐹)𝑘𝑘𝑗𝑗�  for  j = 1, 2, 3 

2)  From computed values, choose 𝑘𝑘𝑗𝑗 as 
�𝐵𝐵(𝑌𝑌�𝐹𝐹𝐹𝐹𝐹𝐹)𝑘𝑘𝑗𝑗� = 𝑚𝑚𝑚𝑚𝑚𝑚 ��𝐵𝐵(𝑌𝑌�𝐹𝐹𝐹𝐹𝐹𝐹)𝑘𝑘𝑗𝑗�� ; j = 1, 2, 3. 

So, it is clear that the estimator 𝑌𝑌�𝐹𝐹𝐹𝐹𝐹𝐹 is bias control for the optimum MSE. 

5.  Comparisons 

This section compares the proposed estimator 𝑦𝑦�𝐹𝐹𝐹𝐹𝐹𝐹 with existing estimators as 
discussed in Section 2 of this manuscript. Let 𝜃𝜃�1, 𝜃𝜃�2, 𝜃𝜃�3,…𝜃𝜃�𝑘𝑘 be k estimators of the 
population parameter 𝜃𝜃 and there exist an estimator 𝜃𝜃� of the population parameter 𝜃𝜃 
such that 

∀ 𝑖𝑖,  var (𝜃𝜃�) < var (𝜃𝜃�𝑖𝑖), i =1, 2, 3, …, k 
i.e., variance of 𝜃𝜃� is minimum among all existing estimators 𝜃𝜃�𝑖𝑖, i =1, 2, 3,…, k, then 𝜃𝜃� 
is best estimator of the population parameter 𝜃𝜃.  
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The theoretical comparison between the existing and proposed estimators, has been 
performed in this section, and the conditions of better performance of 𝑌𝑌�𝐹𝐹𝐹𝐹𝐹𝐹 have been 
derived.  

[A]:  The variance of 𝑌𝑌�𝑎𝑎𝑎𝑎 in SRSWOR is given by 

V(𝑌𝑌�𝑎𝑎𝑎𝑎) = 𝑁𝑁−𝑛𝑛
𝑁𝑁𝑁𝑁

 𝑆𝑆𝑤𝑤𝑤𝑤2  

and the MSE of 𝑌𝑌�𝐹𝐹𝐹𝐹𝐹𝐹 is 

M(𝑌𝑌�𝐹𝐹𝐹𝐹𝐹𝐹)𝑚𝑚𝑚𝑚𝑚𝑚= 𝑆𝑆𝑤𝑤𝑤𝑤
2

𝑛𝑛
 (1 – 𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤2 ) 

Now, let  
𝐷𝐷1 =    𝑉𝑉(𝑌𝑌�𝑎𝑎𝑎𝑎) − 𝑀𝑀(𝑌𝑌�𝐹𝐹𝐹𝐹𝐹𝐹)𝑚𝑚𝑚𝑚𝑚𝑚 

                           = 𝑁𝑁−𝑛𝑛
𝑁𝑁𝑁𝑁

 𝑆𝑆𝑤𝑤𝑤𝑤2  – 𝑆𝑆𝑤𝑤𝑤𝑤
2

𝑛𝑛
 (1 – 𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤2 )  

𝑌𝑌�𝐹𝐹𝐹𝐹𝐹𝐹 is better than 𝑌𝑌�𝑎𝑎𝑎𝑎 if 𝐷𝐷1 > 0 

i.e.            𝑁𝑁−𝑛𝑛
𝑁𝑁𝑁𝑁

 𝑆𝑆𝑤𝑤𝑤𝑤2  – 𝑆𝑆𝑤𝑤𝑤𝑤
2

𝑛𝑛
 (1 – 𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤2 ) > 0 

            𝑁𝑁−𝑛𝑛
𝑁𝑁

>  �1 −  𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤2 � 

            𝑛𝑛 < 𝑁𝑁𝑁𝑁𝑤𝑤𝑤𝑤𝑤𝑤2  
If the condition 𝑛𝑛 < 𝑁𝑁𝑁𝑁𝑤𝑤𝑤𝑤𝑤𝑤2  holds, then 𝑌𝑌�𝐹𝐹𝐹𝐹𝐹𝐹 is always better than 𝑌𝑌�𝑎𝑎𝑎𝑎. 

[B]: The mean squared error of 𝑌𝑌�𝑅𝑅𝑎𝑎𝑎𝑎 is 

MSE (𝑌𝑌�𝑅𝑅𝑎𝑎𝑎𝑎) = 𝑌𝑌
�2

𝑛𝑛
 �C𝑤𝑤𝑤𝑤2 + C𝑤𝑤𝑤𝑤2 − 2𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤𝐶𝐶𝑤𝑤𝑤𝑤𝐶𝐶𝑤𝑤𝑤𝑤� 

Let 𝐷𝐷2 = �𝑀𝑀�𝑌𝑌�𝑅𝑅𝑎𝑎𝑎𝑎� −𝑀𝑀(𝑌𝑌�𝐹𝐹𝐹𝐹𝐹𝐹)𝑚𝑚𝑚𝑚𝑚𝑚� 

          = 𝑌𝑌
�2

𝑛𝑛
 �𝐶𝐶𝑤𝑤𝑤𝑤2 + 𝐶𝐶𝑤𝑤𝑤𝑤2 − 2𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤𝐶𝐶𝑤𝑤𝑤𝑤𝐶𝐶𝑤𝑤𝑤𝑤� – 𝑌𝑌

�2

𝑛𝑛
 [𝐶𝐶𝑤𝑤𝑤𝑤2 − 𝐶𝐶𝑤𝑤𝑤𝑤2 𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤2 ] 

𝑌𝑌�𝐹𝐹𝐹𝐹𝐹𝐹 is better than 𝑌𝑌�𝑅𝑅𝑎𝑎𝑎𝑎, if 𝐷𝐷2 > 0, i.e.  𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤< 𝐶𝐶𝑤𝑤𝑤𝑤
𝐶𝐶𝑤𝑤𝑤𝑤

. 

If the above condition satisfies then 𝑌𝑌�𝐹𝐹𝐹𝐹𝐹𝐹 is better than 𝑌𝑌�𝑅𝑅𝑅𝑅𝑅𝑅. 

[C]: The mean squared error of 𝑌𝑌�𝑅𝑅𝑎𝑎𝑎𝑎1 is 

M(𝑌𝑌�𝑅𝑅𝑎𝑎𝑎𝑎1) = 𝑌𝑌
�2

𝑛𝑛
 �𝐶𝐶𝑤𝑤𝑤𝑤2 +  𝛼𝛼2𝐶𝐶𝑤𝑤𝑤𝑤2 − 2𝛼𝛼𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤𝐶𝐶𝑤𝑤𝑤𝑤𝐶𝐶𝑤𝑤𝑤𝑤� 

Let 𝐷𝐷3 = �𝑀𝑀�𝑌𝑌�𝑅𝑅𝑎𝑎𝑎𝑎1� − 𝑀𝑀(𝑌𝑌�𝐹𝐹𝐹𝐹𝐹𝐹)𝑚𝑚𝑚𝑚𝑚𝑚� 

          = 𝑌𝑌
�2

𝑛𝑛
 �𝐶𝐶𝑤𝑤𝑤𝑤2 + 𝛼𝛼2𝐶𝐶𝑤𝑤𝑤𝑤2 − 2𝛼𝛼𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤𝐶𝐶𝑤𝑤𝑤𝑤𝐶𝐶𝑤𝑤𝑤𝑤� – 𝑌𝑌

�2

𝑛𝑛
 [𝐶𝐶𝑤𝑤𝑤𝑤2 − 𝐶𝐶𝑤𝑤𝑤𝑤2 𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤2 ] 

𝑌𝑌�𝐹𝐹𝐹𝐹𝐹𝐹 is better than 𝑌𝑌�𝑅𝑅𝑎𝑎𝑎𝑎1 , if 𝐷𝐷3 > 0 

i.e.  𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤< 𝛼𝛼 𝐶𝐶𝑤𝑤𝑤𝑤
𝐶𝐶𝑤𝑤𝑤𝑤

 

If the above condition satisfies then 𝑌𝑌�𝐹𝐹𝐹𝐹𝐹𝐹 is better than 𝑌𝑌�𝑅𝑅𝑎𝑎𝑎𝑎1. 
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[D]: The mean squared error of 𝑌𝑌�𝑅𝑅𝑎𝑎𝑎𝑎2  is 

M(𝑌𝑌�𝑅𝑅𝑎𝑎𝑎𝑎2) = 𝑌𝑌
�2

𝑛𝑛
 �𝐶𝐶𝑤𝑤𝑤𝑤2 +  𝜔𝜔2𝐶𝐶𝑤𝑤𝑤𝑤2 − 2𝜔𝜔𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤𝑐𝑐𝑤𝑤𝑤𝑤𝑐𝑐𝑤𝑤𝑤𝑤� 

Let 𝐷𝐷4 = �𝑀𝑀�𝑌𝑌�𝑅𝑅𝑎𝑎𝑎𝑎2� − 𝑀𝑀(𝑌𝑌�𝐹𝐹𝐹𝐹𝐹𝐹)𝑚𝑚𝑚𝑚𝑚𝑚� 

     = 𝑌𝑌
�2

𝑛𝑛
 �𝐶𝐶𝑤𝑤𝑤𝑤2 + 𝜔𝜔2𝐶𝐶𝑤𝑤𝑤𝑤2 − 2𝜔𝜔𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤𝑐𝑐𝑤𝑤𝑤𝑤𝑐𝑐𝑤𝑤𝑤𝑤� – 𝑌𝑌

�2

𝑛𝑛
 �𝐶𝐶𝑤𝑤𝑤𝑤2 − 𝐶𝐶𝑤𝑤𝑤𝑤2 𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤2 � 

𝑌𝑌�𝐹𝐹𝐹𝐹𝐹𝐹 is better than 𝑌𝑌�Rac2 , if 𝐷𝐷4 > 0 

i.e.  𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤< 𝜔𝜔 𝐶𝐶𝑤𝑤𝑤𝑤
𝐶𝐶𝑤𝑤𝑤𝑤

 

If above condition satisfies then 𝑌𝑌�𝐹𝐹𝐹𝐹𝐹𝐹 is better than 𝑌𝑌�𝑅𝑅𝑎𝑎𝑎𝑎2. 

[E]: The mean squared error of 𝑌𝑌�𝑅𝑅𝑎𝑎𝑎𝑎3 is 

M(𝑌𝑌�𝑅𝑅𝑎𝑎𝑎𝑎3) = 𝑌𝑌
�2

𝑛𝑛
 �𝐶𝐶𝑤𝑤𝑤𝑤2 +  𝛿𝛿2𝐶𝐶𝑤𝑤𝑤𝑤2 − 2𝛿𝛿𝜌𝜌𝑤𝑤𝑦𝑦𝑥𝑥𝐶𝐶𝑤𝑤𝑤𝑤𝐶𝐶𝑤𝑤𝑤𝑤� 

Let 𝐷𝐷5 = �𝑀𝑀�𝑌𝑌�𝑅𝑅𝑎𝑎𝑎𝑎2� − 𝑀𝑀(𝑌𝑌�𝐹𝐹𝐹𝐹𝐹𝐹)𝑚𝑚𝑚𝑚𝑚𝑚� 

      = 𝑌𝑌
�2

𝑛𝑛
 �𝐶𝐶𝑤𝑤𝑤𝑤2 + δ2𝐶𝐶𝑤𝑤𝑤𝑤2 − 2𝛿𝛿𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤𝐶𝐶𝑤𝑤𝑤𝑤𝐶𝐶𝑤𝑤𝑤𝑤� – 𝑌𝑌

�2

𝑛𝑛
 [𝐶𝐶𝑤𝑤𝑤𝑤2 − 𝐶𝐶𝑤𝑤𝑤𝑤2 𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤2 ] 

𝑌𝑌�𝐹𝐹𝐹𝐹𝐹𝐹 is better than 𝑌𝑌�𝑅𝑅𝑎𝑎𝑎𝑎3 , if 𝐷𝐷5 > 0 

i.e.  𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤< 𝛿𝛿 𝐶𝐶𝑤𝑤𝑤𝑤
𝐶𝐶𝑤𝑤𝑤𝑤

  

If the above condition satisfies then 𝑌𝑌�𝐹𝐹𝐹𝐹𝐹𝐹 is better than 𝑌𝑌�𝑅𝑅𝑎𝑎𝑎𝑎3. 

6.  Empirical study 

Appendix A displays an engendered simulated population covering amounts of y 
and x respectively. Summary of population is calculated as 
N = 400 𝑌𝑌� = 1.2275 𝑋𝑋� = 0.56500 𝑆𝑆𝑤𝑤𝑤𝑤2  = 12.6791 𝑆𝑆𝑤𝑤𝑤𝑤2  = 3.79790 
𝐶𝐶𝑤𝑤𝑤𝑤 = 2.9008 𝐶𝐶𝑤𝑤𝑤𝑤 = 3.44920 𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤 = 0.80710 𝛽𝛽2(𝑤𝑤𝑥𝑥) = 92.63470 
𝛽𝛽2(𝑤𝑤𝑦𝑦) = 23.0357  𝑆𝑆𝑤𝑤𝑤𝑤𝑤𝑤 = 5.60070 V = 0.67877 

Taking random sample of size 5, 10, 20 and 40 by SRSWOR and, by solving 
optimum condition (4.6) i.e., the equation of degree 3 in terms of k we got three  
k-values for different sample sizes as shown below in Table 6.1. 

Table 6.1: Values of k for different sample sizes 

Sample Size 𝑘𝑘1 𝑘𝑘2 𝑘𝑘3 
n = 5 7.1827013 1.8390406 2.1566182 

n = 10 7.2310521 1.7829198 2.2299408 
n = 20 7.3283849 1.7091097 2.3370733 
n = 40 7.5273670 1.6156457 2.4928638 
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Table 6.1 reveals that for sample size n = 5, by simplifying the optimality condition 
(4.6) we obtained a cubic equation of variable k and using the available constants the 
three values of k are 𝑘𝑘1, 𝑘𝑘2 and 𝑘𝑘3.  A similar procedure is used for sample sizes 10, 20 
and 40.  

7. Simulation study 

In this section, we conducted a simulation using the population data of appendix 
A. The population was visualized through appendix A, and data were provided to 
describe the population. The simulation process involved the following method. 

A preliminary sample of n units was carefully chosen by SRSWOR. Once the 
preliminary sample was selected, the y-values and x-values were obtained for each unit 
in the sample. The criterion for inclusion of items in the sample is L = {y: y > 0}. Every 
estimator was obtained for 5,000 iterations. The estimators were then applied to these 
samples to estimate population parameters of interest. By repeating this process, the 
study aimed to obtain accuracy estimates for the estimators. 

The determination of this simulation is likely to assess the presentation of different 
estimators under adaptive sampling (ACS) scheme using various preliminary sample 
sizes. The bias is calculated by the formula 

  B(𝑦𝑦�) =  1
5000

 ∑ [(𝑦𝑦�i5000
𝑖𝑖=1 )−  𝑌𝑌�]       (7.1) 

and the mean squared error is calculated by the formula  

  M(𝑦𝑦�) = 1
5000

 ∑ [(𝑦𝑦�i)−  𝑌𝑌�]25000
𝑖𝑖=1       (7.2) 

The size of the preliminary sample is considered as n = 5, 10, 20 and 40 and repeated 
5,000 times for each and every sample size n. 

Table 7.1: Bias and MSE of Existing and Proposed Estimators 

𝑦𝑦� 
Bias (𝑦𝑦�) MSE (𝑦𝑦�) 

n = 5 n = 10 n = 20 n = 40 n = 5 n = 10 n = 20 n = 40 

𝑌𝑌�𝑎𝑎𝑎𝑎 0 0 0 0 2.53582 1.26791 0.63395 0.31697 

𝑌𝑌�𝑅𝑅𝑎𝑎𝑎𝑎  -0.25727 -0.24622 -0.25663 -0.27817 0.35221 0.26310 0.12222 0.11167 

𝑌𝑌�𝑅𝑅𝑎𝑎𝑎𝑎1 1.61925 1.78461 1.89083 1.88892 4.87287 4.41820 4.18421 4.04436 

𝑌𝑌�𝑅𝑅𝑎𝑎𝑎𝑎2 3.94233 3.85695 3.87888 3.88283 30.22787 21.38539 18.33143 17.80784 

𝑌𝑌�𝑅𝑅𝑎𝑎𝑎𝑎3 -0.21504 -0.19859 -0.20757 -0.28289 0.34885 0.24523 0.10370 0.11321 

𝑌𝑌�𝐹𝐹𝐹𝐹𝐹𝐹1 0.03349 0.08942 0.11107 0.12835 0.32494 0.23383 0.10168 0.07645 

𝑌𝑌�𝐹𝐹𝐹𝐹𝐹𝐹2 0.21346 0.30079 0.36296 0.41172 0.48638 0.39157 0.25440 0.27200 

𝑌𝑌�𝐹𝐹𝐹𝐹𝐹𝐹3 -0.34290 -0.54661 -0.78513 -1.56488 0.57626 0.63471 0.91916 3.16843 
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By observing Table 7.1 the proposed estimator 𝑌𝑌�𝐹𝐹𝐹𝐹𝐹𝐹 has minimum mean squared 
error for 𝑘𝑘 = 𝑘𝑘1 and minimum bias as well. The proposed estimator is better over all 
the estimators under consideration and the estimator 𝑌𝑌�𝐹𝐹𝐹𝐹𝐹𝐹1 is best overall. 

8.  Discussion and conclusion 

In the present manuscript some estimators are discussed with their properties using 
the concept of large sample approximations in adaptive cluster sampling [see Chutiman 
(2013)] and discussed about factor-type estimator of Singh and Shukla (1987), Shukla 
and Thakur (2008), etc. Then raising idea from these all we experimented on the factor-
type estimator under the same sampling design and found that the factor-type 
estimator of Singh and Shukla (1987) performed excellently overall in the adaptive 
cluster sampling design. The bias and mean squared error (MSE) of factor-type 
estimator are obtained up to the first order in terms of population parameters. The 
condition of optimality is derived as well. 

From the results of simulation (table 7.1), it is clear that modified ratio estimators 
in ACS design have more bias and mean squared error as compared to the factor-type 
estimator at optimum value of k, i.e. 𝑌𝑌�𝐹𝐹𝐹𝐹𝐹𝐹1 , 𝑌𝑌�𝐹𝐹𝐹𝐹𝐹𝐹2 and 𝑌𝑌�𝐹𝐹𝐹𝐹𝐹𝐹3. Also, it is proved that the 
proposed estimator is closer to the true value of average cases. The proposed estimator 
𝑌𝑌�𝐹𝐹𝐹𝐹𝐹𝐹1  results in the lowest MSE as compared to all the estimators considered in this 
article. This proves that the proposed factor-type estimator has a greater efficiency than 
all the estimators under consideration.  
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Appendix A: Population for Empirical Study 

Observations of Study Variable (Y) 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 2 24 5 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 22 5 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 2 0 4 8 0 0 0 0 0 33 0 0 0 27 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 7 6 7 1 0 5 0 0 
0 0 0 0 0 0 0 21 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 4 0 5 7 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 5 7 0 7 7 6 3 0 0 0 0 0 0 
0 0 0 5 4 3 0 5 8 4 5 1 0 5 0 0 0 0 0 0 
0 7 65 0 4 5 0 9 0 0 0 0 0 3 1 0 0 0 0 0 
0 1 4 5 0 7 3 3 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27 0 0 21 
0 0 0 0 0 0 0 0 0 0 0 0 0 29 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Corresponding Observations of Auxiliary Variable (X) 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 11 3 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 11 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 2 4 0 0 0 0 0 12 0 0 0 15 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 3 2 3 0 0 2 0 0 
0 0 0 0 0 0 0 16 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 2 3 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 2 0 3 3 2 1 0 0 0 0 0 0 
0 0 0 2 2 1 0 2 3 2 2 0 0 2 0 0 0 0 0 0 
0 3 18 0 2 2 0 4 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 2 2 0 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 12 
0 0 0 0 0 0 0 0 0 0 0 0 0 27 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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