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Mean estimation based on the factor-type estimator under an
adaptive cluster sampling design

Narendra Singh Thakur', Shubhangi Chaurasia’, Unnati Bhayare®

Abstract

If a sample is designated by a standard sampling strategy and if the character of the study
satisfies a predetermined statement for an independent unit in the sample, then the items
in the locality remain automatically in the sample. This type of method of selection of sampling
units is called adaptive cluster sampling. This manuscript emphasizes the use of the factor-type
estimator designed for population mean of the variable under study using the data of highly
correlated auxiliary (supplementary) variable under adaptive cluster sampling. The bias, mean
squared error and optimum mean squared errors up to the first order is obtained and a simula-
tion study is performed for comparison purpose.

Key words: adaptive cluster sampling (ACS), ratio estimator, factor-type estimator, auxiliary
variable, bias, mean squared error (MSE).

Mathematical Subject Code: 62D05.

1. Introduction

Thompson (1990) introduced an innovative sampling scheme called adaptive sam-
pling, which directly incorporates the knowledge of the study variable into the selection
process. This approach is distinct from traditional sampling strategies that rely solely
on predetermined sampling plans. The adaptive sampling scheme was proposed to ad-
dress situations where the study variable exhibits certain patterns or characteristics that
can inform the sampling process. For instance, in surveys involving rare species, re-
searchers may gather information on the number of individuals with specific charac-
teristics. Frequently, zero abundance is encountered, but when substantial abundance
is observed, it suggests that additional clusters of abundance might be found in nearby
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locations. This pattern is not limited to rare species but can be observed in various do-
mains such as whales, insects, trees, lichens, and more. The conventional approach
in sample surveys involves deciding on a sampling strategy before data collection
begins. However, this predetermined approach may not always be effective, especially
in certain scenarios. For instance, in epidemiological studies of infectious diseases,
encountering a diseased individual suggests a higher-than-expected incidence rate
among nearby individuals. In such cases, ground staff may deviate on or after the
predesignated selection plan and then combine adjacent or closely allied items to the
sample.

Thompson's (1990) adaptive sampling scheme addresses this need for flexibility
in sampling. It starts with drawing a preliminary sample of a predetermined size using
a standard sampling strategy. The values of the sampled items are then examined, and
if an elected item fulfils a specified condition, supplementary items are put in to the
sample from the locality of that item. Thus, adaptive process allows for the expansion
of the sample based on specific criteria or patterns observed in the study variable. The
design of the adaptive sampling scheme is demonstrated in Figure 1(a) and 1(b), which
likely provide visual representations of how the sampling process unfolds.

The Figure 1(a) illustrates the preliminary sampling stage of the adaptive sampling
scheme. A sample of 12 units is selected using a probability sampling procedure, which
could be any conventional sampling design. The key feature of adaptive sampling is that
when one or more units in the preliminary sample satisfy a specific criterion associated
to the variable under study, accompanying units from locality of those selected units
are included in the sample. The neighborhood is typically defined based on spatial
proximity, as indicated by the connected units on the left, right, top, and bottom
in Figure 1(a).

Figure 1(a): Preliminary sample of 12 units
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After the adaptive procedure is finished, the sample contains 54 units, as revealed
in Figure 1(b), where the symbol * represents the unit selected in preliminary sample
of size 12. It should be noted that the concept of neighborhood is not limited to spatial
proximity and is able to be express in numerous aspects subject to the condition and
the nature of the study. In summary, in the adaptive sampling scheme, a preliminary
subgroup of some units is selected using a probability sampling technique and if the
variable of interest for a carefully chosen item satisfies a given criterion, subsequent
units from the locality of that item are considered in the sample. This adaptive approach
allows for the expansion of the sample based on specific conditions or patterns observed
in the variable of interest.
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Figure 1(b): Adaptive cluster sample of 54 units

In the adaptive selection system, the criterion for picking additional neighboring
items can be defined in various ways, depending on the nature of the study. One
approach is to frame the criterion as an interval L that covers a specific range of values
related to the variable of curiosity. If a unit is considered in the sample, it should meet
the criteria fixed by the interval L. Mathematically, it can be represented as if i € L then
the uniti € S.

The provided definitions lay the foundation for understanding the structure and
components of the sampling process in the adaptive cluster sampling scheme. Let's
elaborate on each definition:

1) Neighborhood of a unit: The neighborhood of a unit i refers to a group of items
that contains unit i. These neighborhoods are determined on the basis of design
and selection process and are independent of the population values.
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2) Cluster: A cluster is the assembly of all units that are detected as per an outcome
of the preliminary choice of a specific item i. In ACS, the preliminary selection of
a unit (seed unit) leads to the insertion of entire units in the corresponding cluster
in the final sample. It is possible for a cluster to consist of the union of several
neighborhoods, which means that multiple neighborhoods can be grouped
together as part of the same cluster. The concept of clusters is important for
understanding the unit selection process and how ACS samples are formed.

3) Network: It is a set of items where the inclusion of any item in the preliminary
sample from that set ensures the inclusion of all units in that network in the final
sample. In other words, if a single unit from a network is selected, the entire
network becomes part of the sample. It is worth noting that units not satisfying the
condition L are also considered network, but they consist of a single unit only.
Networks play a significant role in adaptive sampling, where certain networks may
be oversampled to improve estimation efficiency.

4) Edge unit: An edge unit is a population item that does not satisfy the network
requirements but is in the neighborhood of an item that satisfies the condition L.
Essentially, edge units are on the boundary of clusters or networks. They play
a crucial role in ACS because their selection may influence the inclusion of entire
clusters or networks in the final sample.

The estimators taken into consideration as a relationship between neighborhoods,
clusters, networks, and edge units to obtain a reliable and efficient population estimate
and to make a valid statistical inference under adaptive cluster sampling. For further
study some useful and valuable contributions for readers are advise as Chao (2004),
Chutiman and Kumphon (2008), Dryver and Thompson (1998), Pochai (2008) etc.
This manuscript is concerned with to develop the factor-type estimator in adaptive
cluster sampling and discuss its properties. Furthermore, how we were motivating for
writing this manuscript is explained in Section 3 of this paper.

1.1. Notations

Let y be the variable under study based on a population U and let it consists of a set
of N units indexed by their labels U = {1, 2, ... N}. The population mean of y is ¥ = p,
= % YNy LetY,. = wy, = % Yiz1 wy; be the estimate of the mean in adaptive cluster
sampling. Let us consider:

n = Size of preliminary sample,

A; = Network which consists of the item i,

m; = The amount of the items in the network to which i item belongs.

Let wy; and wy; represent the mean of y and the mean of x in the network which

. o 1 1 . .
consist of unit i, viz., wy,; = - Yjea;Yj and wy; = - Y jea, Xj respectively. According to
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Dryver and Chao (2007) adaptive cluster sampling is considered as SRSWOR when the
means of networks are considered under study. Let us use the notations w,, and w, to
denote the sample means of the study and supplementary variables in the transformed

sample respectively. We calculate w,, and wy as

_  1gn _ _ 1gn
Wy —521:1 Wyi and w, = 7 &i=1 Wxi

For simplicity we write,
1 B 1 B
Sy = 77 Zisa Wyi = Wy)%, sty =~ Bl (Wi — W)’

are unbiased estimators of
1

N 7 1 vN 7 ;
Sy = vy Zi=1(Wyi — )2 S = EZi:l(Wxi — X)?  respectively,

1 S\T > e
and p,.s = m Zé":l(wyi — Y) (wy; — X)°; where r,s are positive integers.
2

S, s
2 _ Swy 2 _ Swx .- L
Also, Cy,, = =2 and Cj, = < are the coefficient of variations of w,, and wy
respectively,
and pyyyy = P11 s the coefficient of correlation between w, and wy.

SwySwax
Using the concept of large sample approximations, let ¢ = % —landn = % -1,
for specified w,,, W, respectively, then
E(e) = E(m) = 0, Ee?) = %, E?) = %%, E(e) = pyyy Cuy Cux
and E(e'n/) = 0if i+j>24,j=0,1,2,....
The expectations as derived above under the concept of large sample
approximations will be used for further mathematical treatments.

1 (Wy) 1
Remark: Assume, a =——; w = Bawy —; 0=—— ;
1+Cyyx B2 (Wx)+ Cy 1+ B3 (wy)
1B c Cwy
=L g, = P (B, — 0,); V=P 2
17 a+fB+C 72 7 a+fB+C G 2); Pwyx ¢~

The above symbols will be used for further algebraic treatments.

2. Existing estimators and their characteristics in adaptive cluster sampling

Some existing estimators under adaptive cluster sampling are considered in this
: . c . W
section. Note that, the constants C, = % , Ba(wy) = %, Uy = % and
= 1 s . .
X =p =5 SN Xi s Cuxs Bo(Wy) of the auxiliary variable are known in advance by
past experience.

The unbiased Hansen and Hurwitz estimator for the population mean of main

variable is given by [see, Thompson (1990), Thompson and Seber (1996)]

S 1 —_
Yoo = N Iiv=1(Wy)i =Wwy (2.1)
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where, (w,); is mean of the main variable in the network that contains item i of the
preliminary sample.
The variance of Y, is
(N-1n) N _N-n .,

V(Yac) = Nn(N—-1) i=1[(Wy)i - .uy]2 = Wswy (2.2)
The ratio type estimator under adaptive cluster sampling strategy projected by
Dryver and Chao (2007) as

_ % A =
YRac =Wy = Rac X (2.3)
— X
where, Ry = % . The estimator Y;__ in relationships of & and 7 can approximate up to
X

the first order and is expressed as
Yo, =Y[14+e—n—en+n?]
This estimator is biased and its bias up to the first order is

G Y
B(YRaC) = n [Cv%/x - pwywawax] (2-4)
The expression of MSE is
— 72
M(YRaC) ~n [C\f/y + C\f/x - prywawax] (2.5)
Chutiman (2013) suggested some estimators in adaptive cluster sampling described
as below
\V4 — 1+ Ciyx
® e = () 26

and the estimator Y__ in relationships of ¢ and 77approximate up to the first order,
can be expressed as
Yract = Y[1 + € — an — aen + a?n?]
This estimator is biased and its bias up to the first order is

> Y
B(YRacz) = [aZC\f/x - apwywawax] (2.7)
The equation of MSE is
— 72
M(YRacl) = ; [CVZVy + 0(2 C‘gvx - ZapWyxCWyCWJC] (28)

2 (Wa)+ Civx ]

(B) YRaczz VT/y [ﬁz Wx)uwx+ Clx (29)

and the estimator Y__, in relationships of ¢ and 77approximate up to the first order,
can be expressed as
Yo, =Y [1 4 & — wn — wen + w?n?]
This estimator is biased and its bias up to the first order is
B (YRMZ) = % [wz Cv%lx - wpwyxcwy Cwx] (2.10)
The equation of MSE is

— y2
M(Yr,.,) =— [Ciy + @*Cix = 20PuyxCiuy Cux] (2.11)



STATISTICS IN TRANSITION new series, December 2025 107

©) Vages = 1y [ Eilt) (2.12)

Racs Uwxt B7 (Wx)

and the estimator Yg__, in relationships of ¢ and 73 approximate up to the first order,
can be expressed as
Ye,.. =Y [1+&—6n—8en+ 57

This estimator is biased and its bias up to the first order is

= )
B(YRM3) = [SZCV%,x - 6pwywawax] (2.13)
The equation of MSE is
M(Ty ) =2 [C2y + 62C2x — 28PyyxCuryCovs] 2.14
Racs n wy wx pwyx wy “wx ( . )

The proofs of the above expressions are simple and readers can obtain them similar
manner to that described in Section 4 for the proposed factor-type estimator using large
sample approximations.

3. Proposed Estimator in adaptive cluster sampling

Singh and Shukla (1987) proposed a factor-type (F-T) estimator for estimating
population mean and Singh and Shukla (1993) derived an efficient factor-type
estimator family for estimating the similar population mean. Shukla (2002) suggested
factor-type estimator for estimation in two-phase sampling. Also, Shukla and Thakur
(2008), Thakur and Shukla (2022) developed factor-type estimator as a device of
imputation used for dealing with missingness of the data.

Deriving motivation from all of these, we advocate the modified factor-type
estimator for adaptive cluster sampling is

W (A+C)X+fBW,
Y (A+fB)X+CWy

where, A = (k—1)(k — 2); B =(k—1)(k — 4);
C=(k—-2)k—-3)(k—4);f =%and 0 <k < isa constant.

Yere = (3.1)

The estimator Ypr, is biased and the expressions of bias, MSE and optimum MSE
up to the first order of approximations are obtained ahead in Section 4. Theoretical and
numerical comparisons of different estimators as discussed earlier, with Ypr. is
presented in Section 5 and Section 7 respectively.

For some specified values of k, the estimator Ypr. provides some well-known
estimators like - ratio, product, dual to ratio and unbiased unit mean estimator for
population mean, i.e. at k = 1, 2, 3 and 4, the estimator Ypr, is as special case in the
following Table 3.1.
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Table 3.1: Adaptive factor-type estimator as special cases

Value of k Estimators Value of k Estimators
_ _ X _ _ Wy
k=1 yFTc:WyW_ k=2 yFTc:Wy7
— NX-nw, — —
k=3 Yrre =Wy N-m % k=4 YFTc =Wy

For k = 1 the estimator ypr. provides the ratio estimator for mean, for k = 2 the
proposed estimator is termed in product estimator, for k = 3 the estimator ypr, is
converted as dual to ratio estimator and for k = 4 the factor of auxiliary information
vanishes and the estimator ypr is the same as unbiased unit mean estimator in adaptive
cluster sampling.

4. Bias, MSE and optimum MSE of the proposed estimator

Let B (9), M (é ) and M (9)min represents the bias, MSE and minimum MSE of the
estimator 6. Further, the equations of bias, MSE and minimum MSE of the proposed
estimators in terms of population parameters and other constants (as available) up to
the first order are represented in the subsequent theorems using the concept of large
sample approximations.

Theorem 4.1: The estimator Yz7. in terms of € and 7 up to the first order, could be
stated as
Yere =Y[1 + e+ P(n + en — n?6,)] (4.1)

Proof:From equation (3.1), we have
_ — (A+O)X+fBwy
Yere = wy (A+fB)X+Cwy
and by using the concept of large sample approximation as discussed in Section 1.1

YFTC=Y(1+€)[

(A+C)X + fBX(1+ 1)
(A+fB)X +CX (1+1n)

=YA+o@+6m(1+6,7")

=Y+ +6,m)A+0,n+02n*—-)

=Y[1+ e+ P+ en—n26,)]
Theorem 4.2: Bias of Yy, in the relationships of population parameters is

B(Ypre) = ——P[chwx + PwyxCwyCwx] (4.2)
Proof: B(Ypr.) = E(Vpr, — V)
= == P[0,C2, = PuyxCuyCux]

Theorem 4.3: MSE of Yy, in the relationships of population parameters is

(YFTC) - [ + PZ Cvzvx + 2PpwyxC wax] (4-3)
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Proof: M(YFT(:) E(YFTc - 1)?
[C,f,y + P2C5x + 2PPpyyxCuyCox]
Theorem 4.4: The minimum MSE of (Ygr.), when P= -V is
— 52,
M(YFTc)min: Ty (1- p&/yx) (4.4)

Proof: Minimum MSE occurs when

d —_

aP M(YFT(:) =0
or 2PCgy + 2Pywyx CuyCoyx = 0
the optimal condition is

Cw
P=—purx 2=V (let (45)

S&

Hence, M(YFTc)min:(l pwyx) e~

By simplifying the optimality condition P = —p,,yx ZW —V, we will get a cubic

equation in terms of k and the roots of this equation will provide us best choice of
parameter k for minimum mean squared error with lowest bias.

4.1. Bias control estimator Y pr,

The condition of optimality provides from equation (4.5)
AV+(V+1DfB+(V-1)C=0 (4.6)
The equation (4.6) is an equation of degree 3 in terms of k.
Obviously, at most three values of k (ky, k,, k3) are possible for which MSE is
optimum.
The choice criteria for best estimation is:
1) Compute
|B(Ym)kj| for j=1,2,3
2) From computed values, choose k; as
|BWerdiy| = min[[BFero || 5= 1,23

So, it is clear that the estimator Ypr,. is bias control for the optimum MSE.

5. Comparisons

This section compares the proposed estimator ¥y, with existing estimators as
discussed in Section 2 of this manuscript. Let 8;, 8,, 0s,...0 be k estimators of the
population parameter 8 and there exist an estimator § of the population parameter 8
such that

Vi, var()<var(8;),i=1,2,3,...,k
i.e., variance of @ is minimum among all existing estimators 8;, i =1, 2, 3,..., k, then
is best estimator of the population parameter 6.
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The theoretical comparison between the existing and proposed estimators, has been
performed in this section, and the conditions of better performance of Yzr. have been

derived.

[A]: The variance of ¥, in SRSWOR is given by
V(Yae) = S vy
and the MSE of Yyr, is

2
M(YFTc)mm ( pwyx)

Now, let
D, = V(Yac) - M(YFTc)min

N-n o, Sty 2
= Wswy “Th (1 - pwyx)

Yprcis better than ¥, if D; > 0

. N-n sz

Le. stzvy - Ty 1- p&vyx) >0
N-—
Tn > (1 = piyx)
n < Npjyx

If the condition n < NpJy, holds, then Yrre is always better than Y.

[B]: The mean squared error of ?Rac is
— y2
MSE (YRaC) = " [C\%vy + C\%vx - prywawax]
LetD, = [M(YRM) - M(YFTC)min]
“20C2, + €2y — 2P0yxCoyCorx] ~ = [C2y — C2,P25]
n Lowy wx Pwyxbwylw n Lowy wyPwyx
Cwx

Yere is better than Yz, if D, > 0,i.e. pyyr< -
"%

If the above condition satisfies then Y, is better than Vi

[C]: The mean squared error of YR is
MYy, )= [CVZVy + a?C2y — 2aPyyxCuyCux|
Let Dy = [M(YRm) M(YFTC)mm]
= [C2y + @2Chr = 20PuyxCiy Cua] - = [CEy = Coylya]

Ypre is better than ?Raﬂ’ if D3>0

. CWX
1.€. <aA—
Pwyx Cuy

If the above condition satisfies then Y7, is better than YRac .-
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[D]: The mean squared error of YRM is
— y?2
M(YRacz) = " [Cvzvy + wZCvzvx - 2wpwyxcwycwx]

Let Dy = [M(YRMZ) - M(YFTc)min]
=2 (€2, + w0PC2y — 20PyyxCuyCux] - = [C2y = C2ypR ]
n Lowy wx PwyxCwyCwx n Lbwy wyPwyx

Ypre is better than ?Racz’ ifD,>0

. Cux
Le. pyyx< 0=
wy
If above condition satisfies then Yy, is better than YRM.

[E]: The mean squared error of ?Raw is
M(Tay,,) = 2 [C2, + 62C2 — 26puyxCuuy G
Let Ds = [M(YRMZ) - M(YFTc)min]
- %2 [Clly + 82Cix = 26Pwyx Cuy Cux] - %2 [Chy — ClryPivyx]
Ypre is better than ?Rac3, if Dg >0
Cwx

ie. <6==
Pwyx Cuy

If the above condition satisfies then Y7, is better than ?Rac3.

6. Empirical study

Appendix A displays an engendered simulated population covering amounts of y
and x respectively. Summary of population is calculated as

N = 400 Y =1.2275 X =0.56500 S&y =12.6791 S2.. =3.79790
Cuy =2.9008 Cyy = 3.44920 Pwxy =0.80710  By(wy) = 92.63470
Ba(wy) =23.0357  S,xy = 5.60070 V=0.67877

Taking random sample of size 5, 10, 20 and 40 by SRSWOR and, by solving
optimum condition (4.6) i.e., the equation of degree 3 in terms of k we got three
k-values for different sample sizes as shown below in Table 6.1.

Table 6.1: Values of k for different sample sizes

Sample Size ki ky ks
n=>5 7.1827013 1.8390406 2.1566182
n=10 7.2310521 1.7829198 2.2299408
n=20 7.3283849 1.7091097 2.3370733
n =40 7.5273670 1.6156457 2.4928638
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Table 6.1 reveals that for sample size n = 5, by simplifying the optimality condition
(4.6) we obtained a cubic equation of variable k and using the available constants the
three values of k are kq, k, and k3. A similar procedure is used for sample sizes 10, 20
and 40.

7. Simulation study

In this section, we conducted a simulation using the population data of appendix
A. The population was visualized through appendix A, and data were provided to
describe the population. The simulation process involved the following method.

A preliminary sample of n units was carefully chosen by SRSWOR. Once the
preliminary sample was selected, the y-values and x-values were obtained for each unit
in the sample. The criterion for inclusion of items in the sample is L = {y: y > 0}. Every
estimator was obtained for 5,000 iterations. The estimators were then applied to these
samples to estimate population parameters of interest. By repeating this process, the
study aimed to obtain accuracy estimates for the estimators.

The determination of this simulation is likely to assess the presentation of different
estimators under adaptive sampling (ACS) scheme using various preliminary sample
sizes. The bias is calculated by the formula

B() = o TE°[(9) — V) (7.1)
and the mean squared error is calculated by the formula
M) = ooe ZE(@) - 717 (72)

The size of the preliminary sample is considered as n = 5, 10, 20 and 40 and repeated
5,000 times for each and every sample size n.

Table 7.1: Bias and MSE of Existing and Proposed Estimators

~ Bias (y) MSE (y)
Yy
n=>5 n=10 n=20 n =40 n=>5 n=10 n=20 n =40
Yac 0 0 0 0| 2.53582 1.26791 0.63395 0.31697

YRac -0.25727| -0.24622| -0.25663| -0.27817| 0.35221 0.26310| 0.12222| 0.11167

Yroe 1.61925| 1.78461 1.89083 | 1.88892| 4.87287| 4.41820| 4.18421 4.04436

Yroes 3.94233| 3.85695 3.87888| 3.88283| 30.22787| 21.38539| 18.33143| 17.80784

YRos | -0.21504| -0.19859| -0.20757| -0.28289| 0.34885| 0.24523| 0.10370| 0.11321

YFTcl 0.03349| 0.08942 0.11107| 0.12835| 0.32494| 0.23383| 0.10168| 0.07645

YFTCZ 0.21346| 0.30079 0.36296| 0.41172| 0.48638| 0.39157| 0.25440| 0.27200

YFTC3 -0.34290| -0.54661| -0.78513| -1.56488| 0.57626| 0.63471| 0.91916| 3.16843
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By observing Table 7.1 the proposed estimator Y7, has minimum mean squared
error for k = k; and minimum bias as well. The proposed estimator is better over all
the estimators under consideration and the estimator Yzr, , is best overall.

8. Discussion and conclusion

In the present manuscript some estimators are discussed with their properties using
the concept of large sample approximations in adaptive cluster sampling [see Chutiman
(2013)] and discussed about factor-type estimator of Singh and Shukla (1987), Shukla
and Thakur (2008), etc. Then raising idea from these all we experimented on the factor-
type estimator under the same sampling design and found that the factor-type
estimator of Singh and Shukla (1987) performed excellently overall in the adaptive
cluster sampling design. The bias and mean squared error (MSE) of factor-type
estimator are obtained up to the first order in terms of population parameters. The
condition of optimality is derived as well.

From the results of simulation (table 7.1), it is clear that modified ratio estimators
in ACS design have more bias and mean squared error as compared to the factor-type
estimator at optimum value of k, i.e. YFTQ, ?FTCZ and ?FTC3. Also, it is proved that the
proposed estimator is closer to the true value of average cases. The proposed estimator
YFTcl results in the lowest MSE as compared to all the estimators considered in this
article. This proves that the proposed factor-type estimator has a greater efficiency than
all the estimators under consideration.
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Appendix A: Population for Empirical Study

Observations of Study Variable (Y)

21

12

Corresponding Observations of Auxiliary Variable (X)
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